















# **Managing Simulated Data Products** from the CyberShake PSHA Platform

Scott Callaghan (SCEC) & the CyberShake Collaboration

September 2, 2024

Geo-INQUIRE Workshop on Data Lakes scottcal@usc.edu



- CyberShake Overview
- Data and Metadata
- Current CyberShake milestones
- Data challenges (and solutions)
- What's next?
- Opportunities for collaboration



### CyberShake overview

- SCEC-developed 3D physics-based probabilistic seismic hazard analysis (PSHA) platform
- Earthquake rupture forecast (ERF) provides list of relevant events + probabilities
- Reciprocity-based approach to simulate lowfrequency seismograms for sites of interest
- Intensity measures derived from seismograms
- Hazard results from sites interpolated for map
- Optional stochastic high-frequency simulations to produce broadband models





Hazard map from most recent Southern California CyberShake Study, 22.12. Each triangle is a site location.



### CyberShake Data Layers





### **Data Products**

- Seismograms (historically 2-component) for each event for each site
  - Base raw data product
- Peak shaking measures
  - Used to be geometric mean; now RotD50 and RotD100
  - Subset (~25%) stored in relational database for quick access
- Durations
  - 5-75%, 5-95%, others
  - ~25% stored in relational database
- Disaggregations, hazard curves, hazard maps
  - Aggregate data products



### Metadata

#### Seismic

- Maximum frequency
- Site info
- Event information (magnitude, hypocenter, fault name)
- Velocity model
- Rupture generator
- Tracked in database

#### Simulation-based

- Mesh dimensions
- Timestep size, number of timesteps
- Tracked in database, on wiki
- Runtime-based (provenance)
  - Execution system
  - Code version
  - Command-line arguments
  - Runtime
  - Tracked by workflow system (Pegasus-WMS, HTCondor)



# **Study 24.8**

- Began latest CyberShake study last Tuesday
- Updated broadband simulations for the San Francisco Bay Area
- Improved velocity model
- Similar configuration to Study 22.12
- New data products:
  - 3-component seismograms
  - Vertical response spectra
  - Period-dependent durations





### Challenge: Large Data Lake Size

#### From Study 22.12

| Data Product              | Records per study | Number of files per study | Data size per study |
|---------------------------|-------------------|---------------------------|---------------------|
| Low-frequency seismograms | 200 million       | 2 million                 | 15 TB               |
| Low-frequency IMs         | 10 billion        | 6 million                 | <1 TB               |
| Broadband seismograms     | 200 million       | 2 million                 | 60 TB               |
| Broadband IMs             | 30 billion        | 6 million                 | <1 TB               |
| Aggregate products        | 3,000             | 3,000                     | <1 TB               |
| Total                     | 40 billion        | 16 million                | 75 TB               |

- Data currently stored at Center for Advanced Research Computing at USC
- Plan to migrate to DesignSafe at Texas Advanced Computing Center



# **Challenge: Support Community Access**

- Key contribution of CyberShake is the creation of the dataset for later use
- Dozens of researchers interested in working with CyberShake data
  - Internal: members of the CyberShake collaboration
  - External: members of the broader SCEC, engineering, and preparedness communities
- Describe what data products are available
- Different users desire different levels of access:
  - Nicely packaged data
  - Interactive interface
  - API for scripting



# Challenge: Identify and Deliver Data Subsets

- Size of the dataset makes full download difficult
  - Most users don't need it all anyway
  - Query interface needed to help users select subsets
- Metadata must be delivered with data products
  - Documentation necessary
- Developed CyberShake Data Access Tool
  - Python-based, open source
  - Prompts users with questions to create filters
  - Users can bypass interactive components for use with scripting
  - Delivers database products, seismograms, and seismic metadata
  - https://github.com/SCECcode/cs-data-tools/





### **Challenge: On-Demand Data Products**

- Not all possible data products are created at study time
- Rupture slip time histories
- Synthetic ShakeMaps
- Disaggregations at additional return periods
- Intensity measures on disk, but not in database
- How to support user generation of data products? Gateway? Quakeworx?
  No implemented solution to this challenge yet



### Challenge: Human Resources

- Difficult to obtain funding for scientific software development in the US
- Limited resources for facilitating delivery of data products to users
  - Minimize CyberShake developer involvement
  - Easy-to-use interfaces
  - Documentation, tutorials
  - Extensible
- Balance between targeting new scientific milestones and improving usefulness of existing data



### **Looking Ahead**

- Study 24.8 to finish in about 2 months
- CyberShake data lakes will continue to grow
  - 2 Hz deterministic runs targeted for 2025
  - Integrate non-linear forward simulations
  - Quantify uncertainty of velocity model and high-frequency codes through additional simulations
- Looking for ways to remove barriers to usage
  - Improved documentation
  - Migration to DesignSafe (DOI, access to DesignSafe tools)
  - Increase awareness in potential users



### **Collaboration and Standardization Opportunities**

- File formats + converters
  - CyberShake uses custom binary data formats
  - Move to more common format? (HDF5, ASDF, ...)?
  - Regardless of format, standard converters will be needed
- Capture and distribution of simulation parameters
  - Identify standard simulation parameters that are:
    - Of interest to users
    - Needed for reproducibility
  - Distribute along with other metadata when data is delivered
- What level of reproducibility do we seek?
- If formats and metadata are similar, opportunities for common tools
  - Single point-of-entry for users to access multiple data lakes



### Thanks!

















