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Dynamic source inversion

Dynamic forward calculation

▶ Rupture propagation is controlled
by physics (and laboratory) based
friction law.

▶ Prescribed fault plane and a friction
law with its parameters.

Dynamic source inversion

▶ Uses observed data (seismograms)
to constrain the dynamic
parameters.

▶ Can be regarded as a physical
constraint on kinematic rupture
propagation.



Dynamic source inversion of the 2016 Mw6.2 Amatrice earthquake

▶ Data: low-frequency (up to 0.5-1Hz)
displacements at stations within 50km from the
source

▶ Best fitting model (out of ∼1M models visited
by McMC) has variance reduction 62%

Gallovič et al. (2019)



Broadband dynamic modeling: How to introduce small-scale heterogeneity
to smooth dynamic models?

▶ Motivated by multiscale/fractal model of
fracture energy proposed by
Ide and Aochi (2005).

▶ Template applied to smooth dynamic model
parameters (prestress, strength and Dc)

▶ Improved fit to GMPEs at higher frequencies

Gallovič and Valentová (2023), JGR



What can earthquake source spectra tell us about source?

▶ Fractal model generates ∼omega-square
spectrum

▶ Release the assumption on the omega-square
radiation
and use the observed earthquake spectra as
input data for dynamic source inversion

▶ Additionally constrain the small-scale source
characteristics in a more data-driven approach.

Comparison of the synthetic station-specific
source spectra (apparent source spectra) of
fractal model with empirical estimates of
Amatrice earthquake.



Data: GIT apparent source spectra
▶ Decomposition of acceleration S-wave amplitude spectra Aij at station j for event i:

log10 Aij(f) = log10 Sij(f,Mi) + log10 Pij(f, rij) + log10 Gj(f)

where Sij corresponds to apparent source spectra of event i at station j, Pij and
Gj(f) correspond to path and site term, respectively.

▶ Decomposition performed over large number of events in Central Italy and stations using
the so-called generalized inversion technique (GIT, Bindi et al., 2009; Oth et al., 2008)

▶ In frequency range 0.5-25Hz

▶ Apparent spectra show various complexities, e.g., directivity

Pacor et al. (2016)



Example events: two M4 in Central Italy
Directive event:

▶ 2016-10-30 Norcia Mw4.2 aftershock at
depth 10km

▶ Assuming vertical fault plane (strike agrees
with fault orientation in CI)

▶ Directivity observed over the inspected
frequency range (including
azimuth-dependent corner frequency),
distance independent

Nondirective event:

▶ 2016-08-24 Amatrice Mw4.5 aftershock at
depth 6km

▶ Assuming SW dipping fault plane (similar to
Amatrice mainshock)

▶ Spectra are similar in the full azimuth range

2016-10-30 Mw4.2 2016-08-24 Mw4.5
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Maximum aposteriori models

Directive Mw4.2
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Conclusions

▶ Using apparent source spectra as data for Bayesian dynamic source inversion, we
are able to reveal various characteristics of ∼M4 earthquakes

▶ Since the inversion is performed up to high frequencies (25Hz), we obtain rupture
complexities even on small spatial scale

▶ The information can be used to generate dynamic models with realistic
high-frequency radiation.



Future plans

Inspecting spectral (spatial) properties of small scale heterogeneities

 2016-10-30 Mw4.2  2016-08-24 Mw4.5
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▶ Dynamic parameter perturbations (with
respect to the mean model) averaged over
the model ensemble show k−1 decay in
their spectra

▶ Rescaling the models from M4 to larger

▶ We aim to generate dynamic
models/dynamic scenarios with the same
characteristics (von Karman correlation
function with Hurst exponent 0)

Thank you!
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Mean characteristics of the model ensemble

Revealing uncertainties in the obtained parameters
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Rupture size and mean slip follow magnitude scaling. Duration similar resulting from rupture
geometry - unilateral and circular.
Mean rupture velocity, mean stress drop and scaled parameters (radiation efficiency and
ER/M0) similar: due to tectonic setting or are the parameters unresolved?



Method
Bayesian inversion (Gallovič et al., 2019)
▶ Markov chain Monte Carlo sampling by the Parallel tempering method (Sambridge, 2013)
▶ Prior constraints: M0 with uncertainty, weak nucleation around prescribed hypocenter

(< 1MPa), nonnegative friction drop and prestress, Dc >15mm

▶ Assuming Gaussian data errors to calculate misfit S = 1
2σ2

∑
ln2

(
ASobs

ASsynt

)
Dynamic rupture modeling: FD3D TSN code (Premus et al., 2020)
▶ Fault 2.5x2.5km embedded in homogeneous space (vp=6km/s,vs=3.5km/s)
▶ 4th-order finite-differences in a cartesian box (Madariaga et al., 1998) with slip-weakening

friction implemented by traction-at-split-node (Dalguer and Day, 2007) and PML
absorbing boundaries (FD grid 10m, time step 0.4ms)

▶ Ported to GPU using ACC directives - up to 10x faster than CPU
▶ Freely available on github: https://github.com/fgallovic/fd3d tsn pt

Calculation of apparent spectra
▶ Apparent source time function: integrating shifted slip rates ṡ over fault towards station j:

ASTFsynt(t, xj) =
∫
S
µṡ

(
ξ, t− |xj−ξ|

vs

)
dξ

▶ Synthetic apparent spectra are obtained as Fourier amplitude spectra of the second time
derivative of ASTF



Generating dynamic rupture scenarios constrained by GMPEs

▶ Adopting the same methodology of dynamic
source inversion, but the fit is evaluated against
ground motion intensity measures (SA at
0.2-2Hz).

▶ Assuming strike-slip fault 36x20km and a set of
18 phantom rock-site stations at distances
10-80km, we obtained a scenario database of
∼3000 events of Mw5.8-6.8 with properties
similar to real events (scaling relation, rupture
velocity and stress drop range, energy budget).

▶ Analysing the residuals, we found
underestimation at highest frequencies due to
too coarse model grid (1.2km) leading to source
models not complex enough/depleted at high
frequencies.

▶ Decreasing the model grid size increases the
computational cost for McMC sampling.
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