PyBetVH, a software tool to model Probabilistic Volcanic Hazard Assessment

Laura Sandri

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna

<u>laura.sandri@ingv.it</u>

Roberto Tonini Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti

roberto.tonini@ingv.it

The tool is presently available for download at <u>https://gitlab.rm.ingv.it/roberto.tonini/pybetvh</u> More documentation available as Electronic Supplementary Material of <u>Tonini et al (2015) CaGeo</u>

Outline

What is probabilistic (volcanic) hazard? (15 min)

- definition & hazard curves
- aleatory and epistemic uncertainty
- long- and short-term
- Bayesian approach

BET model (5 min)

- event trees
- BET model

Explanation of the input and output files of PyBetVH (30 min)

5-min break

Installation of PyBetVH on your devices (20 min)

An example (45 min)

probability of a given *hazardous phenomenon* to impact a given *point* above a given *intensity threshold* in a given *time window*

probability of a given *hazardous phenomenon* to impact a given *point* above a given *intensity threshold* in a given *time window*

For example: **probability** of experiencing a **tephra load** larger than 300kg/m² in Napoli from an eruption in 100 years

intensity of a given *hazardous phenomenon* impacting a given *point* with a given *exceedance probability* in a given *time window*

intensity of a given *hazardous phenomenon* impacting a given *point* with a given *exceedance probability* in a given *time window*

For example: intensity (in kg/m²) of tephra ground load with an exceedance probability of 5% expected in Napoli from an eruption in 100 years

How to express hazard? The hazard curve

Hazard Curves include all the information on aleatory uncertainties. From Hazard Curves, one can derive Hazard Maps and Probability Maps

Hazard Curves include all the information on aleatory uncertainties. From Hazard Curves, one can derive Hazard Maps and Probability Maps

Bayesian inference – the importance of epistemic uncertainty

... about the ELLSBERG PARADOX

50% white balls 50% black balls

Epistemic and aleatoric uncertainties

Bayesian inference – the importance of epistemic uncertainty

Bayesian approach

There is no "true" value

 \rightarrow we define a probability density function (pdf) to describe every quantity

Bayesian approach

There is no "true" value

 \rightarrow we define a probability density function (pdf) to describe every quantity

For the *pdf of a probability*→ Beta distribution:

- 1) Parameterized by a **best guess** θ value and an equivalent number of data λ
- 2) Suitable for a probability \rightarrow defined on [0,1]
- Conjugate of the Binomial function (Bernoulli trial scheme) describing the likelihood to observe k successes out of n trials

Bayesian approach

There is no "true" probability value

 \rightarrow we define a probability density function (pdf) to describe every quantity

The pdf is estimated by considering heterogeneous pieces of information

The conjugacy of the Beta with the Binomial simplifies the application of the Bayes theorem (update of θ and λ by *k* and *n*)

Bayesian Hazard Curves represent the most complete output from hazard analysis as they include all the information on aleatory and epistemic uncertainties. From Bayesian Hazard Curves, one can derive Bayesian Hazard Maps and Probability Maps:

Easting (km)

Bayesian Hazard Curves represent the most complete output from hazard analysis as they include all the information on aleatory and epistemic uncertainties. From Bayesian Hazard Curves, one can derive Bayesian Hazard Maps and Probability Maps:

Volcanic Hazard Assessment

Volcanic Hazard Assessment

Data used for long-term hazard assessment:

 Model output (many different runs with different initial and boundary conditions, and eruption size/type and vent location) → computing capacity

442000 444000 446000 448000 450000 452000 454000 456000

De' Michieli-Vitturi et al, 2024

Flow thickness (m

 1.00×10^{-1}

 1.00×10^{-2}

 -1.00×10^{-3}

 1.00×10^{-4}

 1.00×10^{-5}

Volcanic Hazard Assessment

Long-term (land-use planning)

Data used for long-term hazard assessment:

- Model output (many different runs with different initial and boundary conditions, and eruption size/type and vent location) → computing capacity
- "Past data"

Di Vito et al, 2024

Volcanic Hazard Assessment

Data used for long-term hazard assessment:

- Model output (many different runs with different initial and boundary conditions, and eruption size/type and vent location) → computing capacity
- "Past data"
- we must account for the whole natural variability of the phenomenon, and properly combine ALL POSSIBLE ERUPTIVE SCENARIOS

Event Tree

ERUPTION	LOCATION	SIZE/TYPE	PHENOMENA	REACHING AREA	OVERCOMING THRESHOLD
NODE 1-2-3	NODE 4	NODE 5	NODE 6	NODE 7	NODE 8
Eruption	Location 1	Size 1	Lava Flow	Area 1	Threshold 1
	Location 2	Size 2	, Tephra Fall	Area 2	Threshold 2
No Eruption		/	PDC		
•	Location <i>n</i> -	─→ Size <i>k</i> ∕		È Area I →	Threshold <i>m</i>
	Location N	Size <i>K</i>		Area L	Size M

This is a folder you have in the examples provided with the code (EXAMPLE 2)

	examples /	example02-ce	ntral_volcano	: Q	=	~ ≡	- • ×
C Recent							
★ Starred							
습 Home	map.png	png	node4.txt	nodes.txt	areas_ out01.txt	areas_ out02.txt	intensities. txt
Documents							
Downloads	node6	node6	node78-	node78-	nodo78	pybet cfa	
Pictures	out01.txt	out02.txt	prior_ out01.txt	prior_ out02.txt	pastdata_ out01.txt	pybellerg	
🖽 Videos							
💼 Trash							
📑 laura.sandri@ing							
🗵 Music							
🗅 laterali_per_hazard							
+ Other Locations							

This is a folder you have in the examples provided with the code (EXAMPLE 2)

FILE pybet.cfg

It has:

- FIXED name (do not change it)

Open ~	pybet.cfg wh-master/examples/example02-central_vo	Save ≡	- •
1 [Main Settings]			
2 volcano name = Example 2	Central Volcano		
3 volcano center = 242856.	8196254		
4 shape = Cone			
5 utm zone = 51N			
6 geometry = 500, 2100, 22			
7 time window = 1			
8 sampling = 500			
9 background map = map_sat.	png		
10 map limits (m UTM) = 2027	14.3, 272714.3, 8162857.1, 821	7857.1	
11			
12 [Node 1]			
13 prior probability = 1.0			
14 equivalent n. data (lambd	a) = 1		
15 past data (successes) = 0			
16 past data (total) = 0			
17			
18 [Node 2]			
19 prior probability = 1.0			
20 equivalent n. data (lambd	a) = 1		
21 past data (successes) = 0			
22 past data (total) = 0			
23			
24 [Node 3]			
25 prior probability = 0.015			
26 equivalent n. data (lambd	a) = 1		
27 past data (successes) = 1	4		
28 past data (total) = 110			
29			
30 [Node 4]			
31 File name = node4.txt			
32 equivalent n. data (lambd	a) = 1		
33 24 FN-d- 53			
34 [NODE 5]			
ss node 4-5 dependence = Fat	se		
Tile name - nodel tyt			
Node 61			
10 p outcomes = 2			
11 outcomes - Tenbra Dispers	al Ballistic Impact		
$\frac{1}{2}$ units - ka/m ² no-unit	at, battistic impact		
13 p areas - 180 960			
14 file name - node6			
45 file intensities - node6-	intensities tyt		
46 file points-areas - pode6	-2002		
	61 2 6 5		
18 [Node 78]			
49 file name prior = node78-	prior		
50 file name past data = nod	e78-pastdata		
51			
	Plain Text V Tab Width 8 V	In 2 Col 2	~ IN

FILE pybet.cfg

It has:

- FIXED name (do not change it)
- FIXED structure in BLOCKS delimited by [...]

pybet.cfg = _ _ Open ~ Save J+L × ~/PyBetVH/pybetvh-master/examples/example02-central_vo... 1 [Main Settings] 2 volcano name = Example 2 Central Volcano 3 volcano center = 242856, 8196254 4 shape = Cone5 utm zone = 51 N6 geometry = 500, 2100, 22 7 time window = 1 8 sampling = 500 9 background map = map sat.png 10 map limits (m UTM) = 202714.3, 272714.3, 8162857.1, 8217857.1 2 [Node 1] 3 prior probability = 1.0 4 equivalent n. data (lambda) = 1 15 past data (successes) = 0 16 past data (total) = 0 8 [Node 2] 9 prior probability = 1.0 20 equivalent n. data (lambda) = 1 21 past data (successes) = 0 22 past data (total) = 0 24 [Node 3] 25 prior probability = 0.015 26 equivalent n. data (lambda) = 1 27 past data (successes) = 14 28 past data (total) = 110 30 [Node 4] B1 file name = node4.txt 32 equivalent n. data (lambda) = 1 34 [Node 5] 35 node 4-5 dependence = False 36 n. sizes = 337 file name = node5.txt 39 [Node 6] 40 n. outcomes = 2 41 outcomes = Tephra Dispersal, Ballistic Impact 42 units = kg/m2, no-unit 43 n. areas = 180, 960 44 file name = node6 45 file intensities = node6-intensities.txt 46 file points-areas = node6-areas 48 [Node 78] 49 file name prior = node78-prior 50 file name past data = node78-pastdata Plain Text ~ Tab Width: 8 ~ Ln 2, Col 2 INS \checkmark

FILE pybet.cfg

It has:

- FIXED name (do not change it)
- FIXED structure in BLOCKS delimited by [...]
- Each block refers to a node in the event tree

```
pybet.cfg
                                                                       = _ _
  Open ~
                                                                Save
          J+L
                                                                                      ×
                 ~/PyBetVH/pybetvh-master/examples/example02-central_vo...
1 [Main Settings]
2 volcano name = Example 2 Central Volcano
3 volcano center = 242856, 8196254
4 \text{ shape} = \text{Cone}
5 \text{ utm zone} = 51 \text{N}
6 geometry = 500, 2100, 22
7 time window = 1
8 sampling = 500
9 background map = map sat.png
10 map limits (m UTM) = 202714.3, 272714.3, 8162857.1, 8217857.1
12 [Node 1]
13 prior probability = 1.0
4 equivalent n. data (lambda) = 1
15 past data (successes) = 0
16 past data (total) = 0
18 [Node 2]
19 prior probability = 1.0
20 equivalent n. data (lambda) = 1
21 past data (successes) = 0
22 past data (total) = 0
24 [Node 3]
25 prior probability = 0.015
26 equivalent n. data (lambda) = 1
27 past data (successes) = 14
28 past data (total) = 110
30 [Node 4]
31 file name = node4.txt
32 equivalent n. data (lambda) = 1
34 [Node 5]
35 node 4-5 dependence = False
36 n. sizes = 3
37 file name = node5.txt
38
39 [Node 6]
40 n. outcomes = 2
41 outcomes = Tephra Dispersal, Ballistic Impact
42 units = kq/m2, no-unit
43 n. areas = 180, 960
44 file name = node6
45 file intensities = node6-intensities.txt
46 file points-areas = node6-areas
47
48 [Node 78]
49 file name prior = node78-prior
50 file name past data = node78-pastdata
                                     Plain Text ~ Tab Width: 8 ~
                                                                    Ln 2, Col 2
                                                                                 \checkmark
                                                                                      INS
```

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (UTM meters (m))

1 [Main Settings]
2 Volcano name = Example 2 Central Volcano
3 volcano center = 242856, 8196254
4 shape = Cone
5 utm zone = 51N
6 geometry = 500, 2100, 22
7 time window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 202714.3, 272714.3, 8162857.1, 8217857.1

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

volcano name = ...
volcano center = Easting, Northing (same units)

1 [Main Settingc] 2 vblcano name = Example 2 Central Volcano 3 volcano center = 242856, 8196254 4 shape = Cone 5 utm zone = 51N 6 geometry = 500, 2100, 22 7 time window = 1 8 sampling = 500 9 background map = map_sat.png 10 map limits (m UTM) = 202714.3, 272714.3, 8162857.1, 8217857.1

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
```

1 [Main Settings]
2 volcano name = Example 2 Central Volcano
2 volcano senter
3 class senter
4 shape = Cone
5 utm Zone = SIN
6 geometry = 500, 2100, 22
7 time window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 202714.3, 212714.3, 8162857.1, 8217857.1

1 [Main Settings] 2 volcano name - Example 1 Volcanic Field	
3 volcano center = 455906 5774512	
4 shape = Field	
3 geometry = 48000, 44000, 5, 5, 20	
6 utm zone = 215	
7 time window = 1	
8 sampling = 500	
9 background map = map sat.png	
10 map limits (m UTM) = 394906.0, 594906.0, 5694512.0, 5894512.0	
4.4	

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
geometry = If Cone 3 numbers
```

1 [Main Settings]
2 volcano name = Example 2 Central Volcano
3 volcano center = 242856, 8196254
4 shape = Cone
5 utn zone = 51N
6 geometry = 500, 2100, 22
7 time window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 202714.3, 272714.3, 8162857.1, 8217857.1

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

volcano name = ... volcano center = Easting, Northing (same units) shape = Cone or Field geometry = If Cone 3 numbers: radius for the crater area, radius for the volcano edifice, degrees from North for the first lateral sector 1 [Main Settings]
2 vplcano name = Example 2 Central Volcano
3 volcano center = 242856, 8196254
4 shape = Cone
5 vtn zone - 51N
6 geometry = 500, 2100, 22
7 ttme window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 202714.3, 272714.3, 8162857.1, 8217857.1

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field:
```

```
geometry = If Field 5 numbers:
```

```
1 [Main Settings]
2 volcano name = Example 1 Volcanic Field
3 volcano center = 455906, 5774512
4 chape = Field
5 geometry = 48000, 44000, 5, 5, 20
0 utm zone = z15
7 time window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 394906.0, 594906.0, 5694512.0, 5894512.0
```


FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

volcano name = ... volcano center = Easting, Northing (same units) shape = Cone or Field: geometry = If Field 5 numbers: distance along Easting, distance along Northing, number of cells along Easting, number of cells along Northing, degrees from North for direction 1 [Main Settings]
2 volcano name = Example 1 Volcanic Field
3 volcano center = 455906, 5774512
4 chape - Field
5 geometry = 48000, 44000, 5, 5, 20
0 ULM ZOHE = Z15
7 time window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 394906.0, 594906.0, 5694512.0, 5894512.0

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

```
ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))
```

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
utmzone = self explaining
```

```
1 [Main Settings]
2 volcano name = Example 1 Volcanic Field
3 volcano center = 455966, 5774512
4 shape = Field
5 geometry = 48060, 44000, 5, 5, 20
6 utm zone = 215
7 the window = 1
8 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 394906.0, 5694512.0, 5894512.0
```

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

```
ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))
```

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
utmzone = self explaining
```

time window = number in the unit that will be used also in Node 1 to define the probability of unrest IN THIS TIME WINDOW (e.g., 1 month, 30 days, 10 years)

```
1 [Main Settings]
2 volcano name = Example 1 Volcanic Field
3 volcano center = 455906, 5774512
4 shape = Field
5 geometry = 48000, 44000, 5, 5, 20
6 utm zone = 215
7 time window = 1
6 sampling = 500
9 background map = map_sat.png
10 map limits (m UTM) = 394906.0, 594906.0, 5694512.0, 5894512.0
```

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

```
ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))
```

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
utmzone = self explaining
time window = number
sampling = number of samples to describe the pdf
at each node (the larger the more defined the pdf, but
also the slower the code)
```

1 [Main Settings]
2 volcano name = Example 1 Volcanic Field
3 volcano center = 455906, 5774512
4 shape = Field
5 geometry = 48000, 44000, 5, 5, 20
6 utm zone = 215
7 time window = 1
8 sampling = 500
9 background map = Map_sat.png
10 map limits (m UTM) = 394906.0, 594906.0, 5694512.0, 5894512.0

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
utmzone = self explaining
time window = number
sampling = number of samples
background map = name on map file (png, jpg)
```

```
1 [Main Settings]
2 volcano name = Example 1 Volcanic Field
3 volcano center = 455906, 5774512
4 shape = Field
5 geometry = 48000, 44000, 5, 5, 20
6 utm zone = 21S
7 time window = 1
9 campling = 500
9 background map = map_sat.png
10 map timits (m UTM) = 354500.0, 594906.0, 5694512.0, 5894512.0
```

FILE pybet.cfg

1st Block: [Main settings] It defines the volcano (name, coordinates, geometry), the background map and its limits

ALL COORDINATES MUST BE IN THE SAME UNITS (here it is meters (m))

```
volcano name = ...
volcano center = Easting, Northing (same units)
shape = Cone or Field
utmzone = self explaining
time window = number
sampling = number of samples
background map = name on map file (png, jpg)
map limits (m UTM) = Easting_min,
Easting_max, Northing_min, Northing_max in m UTM
```

Volcano name - Example 1 Volcan	ic Field
volcano center - 455906 577451	2
shape = Field	L
5 geometry = 48000, 44000, 5, 5,	20
5 utm zone = 21S	
7 time window = 1	
sampling = 500	
background man - man sat png	

FILE pybet.cfg

2nd, 3rd and 4th Blocks: [Node 1], [Node 2], [Node 3]

Overall, they define the probability of eruption in the time windowhey are 3 separate nodes but for long term we suggest to leave the first 2 as they are and only act on Node 3

FILE pybet.cfg

2nd, 3rd and 4th Blocks: [Node 1], [Node 2], [Node 3]

Overall, they define the probability of eruption in the time windowhey are 3 separate nodes but for long term we suggest to leave the first 2 as they are and only act on Node 3

Common structure:

```
prior probability = best guess of prior
equivalent n. data (lambda) = \lambda
```


FILE pybet.cfg

2nd, 3rd and 4th Blocks: [Node 1], [Node 2], [Node 3]

Overall, they define the probability of eruption in the time windowhey are 3 separate nodes but for long term we suggest to leave the first 2 as they are and only act on Node 3


```
Common structure:

prior probability = best guess of prior

equivalent n. data (lambda) = \lambda

past data (successes) = number of successes (e.g., 4 magmatic unrest)

past data (total) = number of trials (e.g., 10 unrest)
```


30 [Node 4] 31 file name = node4.txt 32 equivalent n. data (lambda) = 1

FILE pybet.cfg

5th Blocks: [Node 4] It defines the spatial probability of vent opening, conditional to an eruption.

This is done through a file

file name = a file name equivalent n. data (lambda) = λ

FILE for node 4 (here node4.txt)

node4.txt structure if Geometry is CONE

10.90				
20.010				
30.010				
50.06 0				
Plain Text 🗸	Tab Width: 8 🗸	Ln 5, Col 8	~	INS

prior probability

prior probability

FILE for node 4 (here node4.txt)

node4.txt structure if Geometry is FIELD

Open ~ 🕞	nod ~/PyB	Save		0		×
1 0.000835 0.0						
2 0.00835 0.0						
3 0.03314 3.0						
4 0.002505 0.0						
50.00.0						
6 0.040315 0.0						
7 0.10675 3.0						
8 0.09321 5.0						
9 0.03648 0.0						
10 0.00668 5.0						
11 0.002505 0.0						
12 0.184575 14.0						
13 0.076025 2.0						
14 0.117165 15.0						
15 0.01336 0.0						
160.00.0						
17 0.055045 1.0						
18 0.060055 3.0						
19 0.035645 0.0						
20 0.11/165 5.0						
210.00.0						
22 0.0 0.0						
23 0.005845 0.0						
230.00.0						
Plain Text 🗸 Tab V	Vidth: 8 ~	Li	n 1, Col 1		~	INS
past d	lata	-	-	-	-	-

34 [Node 5] 35 node 4-5 dependence = False 36 n. sizes = 3 37 file name = node5.txt

FILE pybet.cfg

6th Blocks: [Node 5] It defines the probability distribution of the eruptive sizes (aka Frequency-Magnitude distribution), conditional to an eruption.

This is done through a file (here named node5.txt)

34 [Node 5] 35 node 4-5 dependence = False 36 n. stes = 3 37 file name = node5.txt 38

FILE pybet.cfg

6th Blocks: [Node 5] It defines the probability distribution of the eruptive sizes (aka Frequency-Magnitude distribution), conditional to an eruption.

This is done through a file

Node 4-5 dependence = False¹

1 - For reasons of time, we do not manage the case of F-M distribution that is spatially varying

34 [Node 5] 35 pode 4-5 dependence - False	
36 n. sizes = 3	
37 file name = node3.txt 38	

FILE pybet.cfg

6th Blocks: [Node 5] It defines the probability distribution of the eruptive sizes (aka Frequency-Magnitude distribution), conditional to an eruption.

This is done through a file

```
Node 4-5 dependence = False
n. sizes = an integer number for the number of
size classes (e.g., VEI)
```

34 [Node 5] 35 node 4-5 dependence = False 26 n. sizes = 3 37 file name = node5.txt

FILE pybet.cfg

6th Blocks: [Node 5] It defines the probability distribution of the eruptive sizes (aka Frequency-Magnitude distribution), conditional to an eruption.

This is done through a file

Node 4-5 dependence = False
n. sizes = an integer number for the number of
size classes (e.g., VEI)
file name = a file name

FILE for node 5 (here node5.txt)

node5.txt structure

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

- 42 units = kg/m2 43 n. areas = 135 44 file name = node6
- 45 file intensities = node6-intensities.txt
 46 file points-areas = node6-areas

46 file

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

n. outcomes = **an integer number** for the number of hazardous events considered

>>> [Node 6] 4> n. outcomes = 1 41 outcomes = Tephra Load 42 units = kg/m2 43 n. areas = 135 44 file name = node6 45 file intensities = node6-intensities.txt 46 file points-areas = node6-areas 47

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

n. outcomes = an integer number for the number of hazardous events considered outcomes = names for the hazardous events (comma separated if >1)

20	
39 [Noo	de 6]
400	outcomes = 1
41 out	comes = Tephra Load
42 UN1	ts = kg/m2
43 n. a	areas = 135
44 file	e name = node6
45 file	e intensities = node6-intensities.txt
46 file	e points-areas = node6-areas
47	

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

```
n. outcomes = an integer number for the number of
hazardous events considered
outcomes = names for the hazardous events (comma
separated if >1)
units = units of hazard measure for each hazardous
```

event (comma separated if >1)

	20 [Nodo 6]
	10 p. outcomes = 1
	41 outcomes = Tepbra Load
_	42 units = kg/m2
	43 n. areas = 135
	44 file name = node6
	45 file intensities = node6-intensities.txt
	46 file points-areas = node6-areas
	47

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

```
n. outcomes = an integer number for the number of
hazardous events considered
outcomes = names for the hazardous events (comma
separated if >1)
units = units of hazard measure for each hazardous
event (comma separated if >1)
n. areas = integer numbers of target grid points for
each hazardous event (comma separated if >1)
```

```
30
39 [Node 6]
40 n. outcomes = 1
41 outcomes = Tephra Load
42 units = kg/m2
43 n. areas = 135
44 file name = nodeo
45 file intensities = node6-intensities.txt
46 file points-areas = node6-areas
```

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

```
n. outcomes = an integer number for the number of
hazardous events considered
outcomes = names for the hazardous events (comma
separated if >1)
units = units of hazard measure for each hazardous
event (comma separated if >1)
n. areas = integer numbers of target grid points for
each hazardous event (comma separated if >1)
file name = a PART OF file name with the probability
distribution of each hazardous event for each eruptive size
```

```
30
39 [Node 6]
40 n. outcomes = 1
41 outcomes = Tephra Load
42 units = kg/m2
43 n. areas = 135
44 file name = node6
45 file intensities = node6-intensities.txt
46 file points-areas = node6-areas
```

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

n. outcomes = **an integer number for the number of** hazardous events considered

outcomes = names for the hazardous events (comma
separated if >1)

```
units = units of hazard measure for each hazardous
event (comma separated if >1)
```

n. areas = **integer numbers** of target grid points for each hazardous event (comma separated if >1)

```
file name = a PART OF file name with the probability distribution of each hazardous event for each eruptive size
```


You have to create a file for each hazardous event: node6_out01.txt node6_out02.txt ...

each with structure:

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

```
n. outcomes = an integer number for the number of
hazardous events considered
outcomes = names for the hazardous events (comma
separated if >1)
units = units of hazard measure for each hazardous
event (comma separated if >1)
n. areas = integer numbers of target grid points for
each hazardous event (comma separated if >1)
file name = a PART OF file name with the probability
distribution of each hazardous event for each eruptive size
file intensities = a file name containing the
intensity thresholds for the hazard curve
```

39 [Node 6] 40 n. outcomes = 1 41 outcomes = Tephra Load 42 units = kg/m2 43 n. areas = 135 44 file name = node6 5 file intensities = node6-intensities.txt 40 file points-areas = node6-areas 40 file points-areas = node6-areas 40 file points-areas = node6-areas 40 file points-areas = node6-areas

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

```
n. outcomes = an integer number for the number of hazardous events considered
```

outcomes = names for the hazardous events (comma
separated if >1)

```
units = units of hazard measure for each hazardous
event (comma separated if >1)
```

n. areas = **integer numbers** of target grid points for each hazardous event (comma separated if >1)

file name = **a PART OF file name** with the probability distribution of each hazardous event for each eruptive size

file intensities = a file name containing the intensity thresholds for the hazard curve

You have to create a file (here *node6-intensities.txt*)

with structure:

thresholds values on the x-axis of hazard curves

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

```
n. outcomes = an integer number for the number of
hazardous events considered
outcomes = names for the hazardous events (comma
separated if >1)
units = units of hazard measure for each hazardous
event (comma separated if >1)
n. areas = integer numbers of target grid points for
each hazardous event (comma separated if >1)
file name = a PART OF file name with the probability
distribution of each hazardous event for each eruptive size
file intensities = a file name containing the
intensity thresholds for the hazard curves
file points-areas = a PART OF file name
containing the coordinate of each target grid point
```

39 [Node 6] 40 n. outcomes = 1 41 outcomes = Tephra Load 42 units = kg/m2 43 n. areas = 135 44 file name = node6 45 file intensities = node6-intensities.txt 46 file points-areas = node6-areas

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

n. outcomes = an integer number for the number of hazardous events considered

outcomes = names for the hazardous events (comma separated if >1)

```
units = units of hazard measure for each hazardous
event (comma separated if >1)
```

n. areas = **integer numbers** of target grid points for each hazardous event (comma separated if >1)

file name = a PART OF file name with the probability
distribution of each hazardous event for each eruptive size
file intensities = a file name containing the
intensity thresholds for the hazard curves

file points-areas = a PART OF file name
containing the coordinate of each target grid point

39 [Node 6] 40 n. outcomes = 1 41 outcomes = Tephra Load 42 units = kg/m2 43 n. areas = 135 44 file name = node6 45 file intensities = node6-intensities.txt 45 file points-areas = node6-areas

Open ~ 🕞	node6-areas_out0 ~/PyBetVH/pybetvh-master/exa	1.txt amples/webinar	Save = -		×
1 629623.80010986328000	0 4175281.91009521860	0000 1			
2 631623.80010986514000	0 4175281.91009521860	0000 2			
3 637623.80010986421000	0 4175281.91009521860	0000 3			
4 615623.80010986421000	0 4177281.91009521670	0000 4			
5 627623.80010986328000	0 4177281.91009521670	0000 5			
6 629623.80010986328000	0 4177281.91009521670	0000 6			
7 631623.80010986514000	0 4177281.91009521670	0000 7			
8 633623.80010986421000	0 4177281.91009521670	0000 8			
9 635623.80010986421000	0 4177281.91009521670	0000 9			
10 637623.80010986421000	0 4177281.91009521670	0000 10			
11 639623.80010986421000	0 4177281.91009521670	0000 11			
12 641623.80010986328000	0 4177281.91009521670	0000 12			
13 643623.80010986328000	0 4177281.91009521670	0000 13			
14 645623.80010986328000	0 4177281.91009521670	0000 14			
15 647623.80010986328000	0 4177281.91009521670	0000 15			
16 613623.80010986514000	0 4179281.91009521670	0000 16			
1	Plain Text 🗸 🔤	rab Width)8 ~	Ln 190, Col 54	~	INS
			\backslash		
/ ongitude a	atitude	nı ce	Imber of the	gri	d

FILE pybet.cfg

7th Blocks: [Node 6]

It defines several information on the hazard: the number of hazardous phenomena considered, the hazard measure for each of them, the target grids.

This is done through some files

n. outcomes = **an integer number** for the number of hazardous events considered

outcomes = names for the hazardous events (comma
separated if >1)

```
units = units of hazard measure for each hazardous
event (comma separated if >1)
```

n. areas = **integer numbers** of target grid points for each hazardous event (comma separated if >1)

file name = a PART OF file name with the probability
distribution of each hazardous event for each eruptive size
file intensities = a file name containing the
intensity thresholds for the hazard curves

file points-areas = a PART OF file name
containing the coordinate of each target grid point

FILE pybet.cfg

8th Block: [Node78] It defines the impact of the hazardous events considered on the target grid

Information is based on simulations from a numerical or empirical model and/o from past data

48 [Node 78] 19 file name prior = node78 prior 50 file name past data = node78-pastdata 51

FILE pybet.cfg

8th Block: [Node78] It defines the impact of the hazardous events considered on the target grid

Information is based on simulations from a numerical or empirical model and/o from past data

File name prior = **a PART OF file name** containing the prior probability of each target grid point experiencing the hazardous event above each threshold, given eruption size and vent position % [Norde 78] S file name prior = node78-prior Offile name past data = node78-pastdata 1

FILE pybet.cfg

8th Block: [Node78] It defines the impact of the hazardous events considered on the target grid

Information is based on simulations from a numerical or empirical model and/o from past data

File name prior = **a PART OF file name** containing the prior probability of each target grid point experiencing the hazardous event above each threshold, given eruption size and vent position

1st line:	p1, p2, pNi, A7&8 for grid point 1, vent position 1, size class 1
2nd line:	p1, p2, pNi, A7&8 for grid point 1, vent position 1, size class 2
Ns th line:	p1, p2, pNi, $\Lambda_{7\&8}$ for grid point 1, vent position 1, size class Ns
$(Ns+1)^m$ line:	$p_1, p_2, \dots p_{N_i}, \Lambda_{7\&8}$ for grid point 1, vent position 2, size class 1
(Nv*Ns) th line:	p1, p2, pNi, $\Lambda_{7\&8}$ for grid point 1, vent position Nv, size class Ns
$(Nv*Ns+1)^{th}$ line:	p1, p2, pNi, $\Lambda_{7\&8}$ for grid point 2, vent position 1, size class 1
$(Np*Nv*Ns)^{th}$ line:	p1, p2, pNi, $\Lambda_{7\&8}$ for grid point Np, vent position Nv, size class Ns

file name prior = node78-prio

FILE pybet.cfg

8th Block: [Node78] It defines the impact of the hazardous events considered on the target grid

Information is based on simulations from a numerical or empirical model and/o from past data

48 [Node 78] 49 fil<mark>e name prior</mark>

file name past data = node78-pastdata

File name prior = **a PART OF file name** containing the prior probability of each target grid point experiencing the hazardous event above each threshold, given eruption size and vent position

File name past data = **a PART OF file name** containing the past data on the hazardous event

FILE pybet.cfg

8th Block: [Node78] It defines the impact of the hazardous events considered on the target grid

Information is based on simulations from a numerical or empirical model and/o from past data

File name prior = **a PART OF file name** containing the prior probability of each target grid point experiencing the hazardous event above each threshold, given eruption size and vent position

File name past data = **a PART OF file name** containing the past data on the hazardous event

0	pen 🗸 🕞	node78_pastdata_out01.txt ~/PyBetVH/pybetvh-master/examples/example02-central_volcano	Save =			×
1	1.0000000e+00					
2	1.0000000e+00					
3	0.000000e+00					
4	0.000000e+00					
5	0.000000e+00					
б	0.000000e+00					
7	0.000000e+00					
8	0.000000e+00					
9	0.000000e+00					
10	0.000000e+00					
11	0.000000e+00					
12	0.000000e+00					
13	0.000000e+00					
14	0.000000e+00					
15	0.000000e+00					
16	0.000000e+00					
17	0.000000e+00					
18	1.0000000e+01					
10	1 0000000.01	Plain Text 🗸 Tab Width: 8 🗸	Ln 1 Co	11	~	INS
-		Flain Text + Tab Width 8 +	LII I, CO		2222	Crit

I st line: 2 nd line: 3 rd line:	index of the vent position of eruption 1 index of the size class of eruption 1 measured intensity value for grid point 1 in eruption 1
 $(Np+2)^{th}$ line: $(Np+3)^{th}$ line: $(Np+4)^{th}$ line: $(Np+5)^{th}$ line:	 measured intensity value for grid point Np in eruption 1 index of the vent position of eruption 2 index of the size class of eruption 2 measured intensity value for grid point 1 in eruption 2
$Ne^{(Np+2)^{th}}$ line:	measured intensity value for grid point Np in eruption Ne

An example*

An island with a volcano. Historical catalogue of 8 eruptions in the last 1000 years:

4 effusive 3 small explosive

1 large explosive

No clue on the temporal model of occurrence of eruptions

* Download the folder with the files to run this examples from <u>https://drive.google.com/file/d/1xFk0nGbHX_00qZoSIC_3wkz2AdX_71QJ/view?usp=sharing</u> Once downloaded, unzip it wherever you want and load it from the PyBetVH tool
An example

An island with a volcano. Historical catalogue of 8 eruptions in the last 1000 years:

4 effusive 3 small explosive 1 large explosive

No clue on the temporal model of occurrence of eruptions

A map for the spatial probability of vent opening based on geomorphological features

An example

An island with a volcano. Historical catalogue of 8 eruptions in the last 1000 years:

4 effusive 3 small explosive 1 large explosive

No clue on the temporal model of occurrence of eruptions

A map for the spatial probability of vent opening based on geomorphological features

Simulations from a numerical model of tephra dispersal for small and large explosive eruptions, sampling the statistics of wind profiles from specific Eruption Source Parameters defined for small and large explosive eruptions

PVHA for tephra fallout on the island?

4188

4186

600.0

602.5

605.0

607.5

610.0

Easting (km)

612.5

615.0

7.68E+01

5.12E + 01

2.56E + 01

617.5

620.0

- 1. Pie chart of the absolute probability of eruption / no eruption in 10 years
- 2. Absolute Probability of an eruption from vent 12 in 10 years
- 3. 90th percentile of the Conditional Probability of an eruption from vent 12
- 4. Distribution of the Absolute Probability of an eruption of EXPLOSIVE size from vent 13, in 10 years
- 5. Absolute hazard Curve for point 20 to overcome 300 kg/m² in 10 years from a LARGE explosive eruption
- 6. 90th percentile of the conditional probability to overcome 300 kg/m² from an explosive eruption in point 20
- 7. 50th percentile absolute HAZARD MAP for 3% exceedance probability in 10 years
- 8. 90th percentile probability map for 100 kg/m² ground load in case of eruption

If you have not yet done so, download the zipped folder with the files to run this examples from <u>https://drive.google.com/file/d/1xFk0nGbHX_00qZoSIC_3wkz2AdX_71QJ/view?usp=sharing</u> Once downloaded, unzip it wherever you want and load it from the PyBetVH tool

1 - Pie chart of the absolute probability of eruption / no eruption in 10 years

2 - Absolute Probability of an eruption from vent 12 in 10 years

3 - 90th percentile of the Conditional Probability of an eruption from vent 12

PROBABULTY - OASSULTE - OASSULTE - CONDICIAL SELECTED NODE: N:: 100 Perc 1000000000000000000000000000000000000

4 - Distribution of the Absolute Probability of an eruption of EXPLOSIVE size from vent 13, in 10 years

5 - Absolute hazard Curve for point 20 to overcome 300 kg/m² in 10 years from a LARGE explosive eruption

6 - 90th percentile of the conditional probability to overcome 300 kg/m² from an explosive eruption in point 20

7 - 50th percentile absolute HAZARD MAP for 3% exceedance probability in 10 years

8 - 90th percentile probability map for 100 kg/m² ground load in case of eruption

