'4th Online GEO-Inquire FAIR Training: reproducible code'

Stefano Rapisarda (RDM, Utrecht University Library)
2024-11-26

Towards FAIR software: Replicability and Reproducibility

During the workshop we emphasized that reproducibility is a core principle of science. In this context, providing readable, clean, and robust code is essential. Simply having code that runs doesn't guarantee good scientific software.

Example of Project Structure

Recommended project structures for Python and R:

Python Project Structure

my_python_package/

requirements.txt

.gitignore # Specifies intentionally untracked files to ignore LICENSE # Contains the project's licensing information README.md # Project documentation and overview data/ # Data storage directory processed_data/ # Processed and cleaned data files # Original, unmodified data files raw_data/ # Additional documentation files docs/ notebooks/ # Jupyter notebooks or analysis scripts

List of Python package dependencies

```
src/
                           # Source code directory
      my_python_package/ # Package source code
          __init__.py
                          # Package initialization file
                          # Main package script
          main.py
  tests/
                           # Unit tests and test scripts
R Project Structure
my_r_package/
                           # R Project configuration file
   .Rproj
                           # Specifies intentionally untracked files to ignore
  .gitignore
                           # Package metadata and dependencies
  DESCRIPTION
  R/
                           # R source code directory
      main.R
                          # Main script
                          # Custom function definitions
      my_functions.R
  README.md
                           # Project documentation and overview
```

data/ # Data storage directory

processed/ # Processed and cleaned data files raw/ # Original, unmodified data files

notebooks/ # R Markdown or analysis notebooks

tests/ # Testing directory

testthat/ # Test cases

testthat.R # Test runner script

Key recommendations for Licensing

- Reflect on potential users
- Provide license information in the repository
- Use resources like choosealicense.com
- Consult your Department's Research Support Office

README File Best Practices

A README should:

- Be the first thing users see
- Explain the project's purpose and motivation
- Provide getting started instructions
- Offer support contact information
- Indicate project maintainers

Writing FAIR and Clean Code

Code quality guidelines:

- Use strategic whitespaces and newlines to enhance readability.
- Choose descriptive names for functions and variables to convey intent.
- Maintain a consistent coding style across the codebase.
- Assign single, well-defined purposes to functions and classes.
- Implement unit testing to validate functionality and catch bugs early.
- Encourage peer review to identify issues and share knowledge.
- Document key functions and modules to improve maintainability.
- Keep dependencies minimal and well-organized.

Software Archiving and Citation

Recommended citation hierarchy:

- 1. Cite the publication
- 2. If no publication, cite the DOI (from Zenodo or Figshare)
- 3. If no DOI, cite the GitHub repository
- 4. Ideally, use all three methods

Git tagging process:

- Use Semantic Versioning (vX.Y.Z)
 - Major (X): Breaking changes
 - Minor (Y): Backwards-compatible features
 - Patch (Z): Bug fixes
- Use suffixes like -beta or -rc for pre-releases

Publishing on Zenodo

- 1. Create a public GitHub repository
- 2. Create a software release
- 3. Log in to Zenodo with GitHub credentials
- 4. Select repository to archive
- 5. Obtain a persistent identifier (DOI)

Web Resources

FAIR and Research Software

• FAIR Principles for Research Software

Packaging Guides

- Python Guide to Packages
- R Guide to Packages

Coding style guides

- Python coding style guide
- R coding style guide

Writing a good README file

- Readme files GitHub guidelines
- Example of ASReview README file, scroll down the ASReview GitHub repository

Licensing

- Open Source License Catalogue
- Choose a License Tool

Repository Management and Publication

- Assigning a DOI to Your Repository
- GitHub README Files Guidelines

Additional Resources

- The Turing Way
- Utrecht University Python Project Template
- Utrecht University R Project Template