

Tsunami-HySEA:

Introduction & tips on installation (II)

José M. González-Vida, Sergio Ortega-Acosta, Jorge Macías

EDANYA Group

University of Málaga (Spain)

Geo-INQUIRE is funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Tsunami-HySEA

- Access to the Computing Services
- Graphical output
- Example in the Mediterranean
- T-HySEA webplatform.

Normally the access to the Computer Services uses SSH protocol.

General access:

ssh -XY username@computer_name

Windows: Putty OS-X: Terminal Linux: Terminal

Tips:

How to enable a graphical user interface (X-Windows or X11)?

Windows: Putty + Xming or MobaXterm

OS-X: Terminal + XQuartz

Linux: Terminal + X11

In our case we can use:

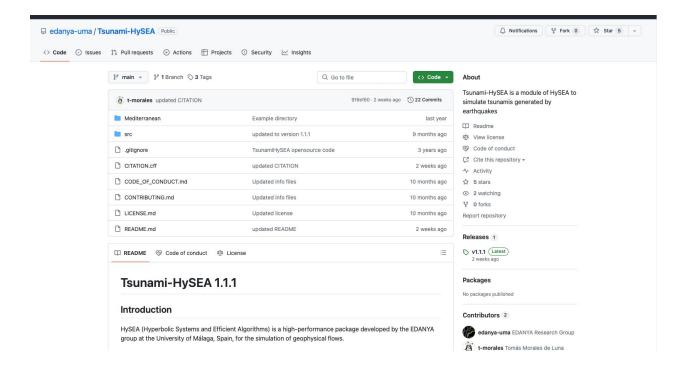
- -Web based ssh service provided by Google Cloud (no graphical interface)
 - Gcloud tool with graphical connection.

Example:

```
./gcloud compute ssh --ssh-flag="-X" --zone "us-central1-a" "tsunami-hysea" --project "civic-abode-420411"
```


In our case we can use:

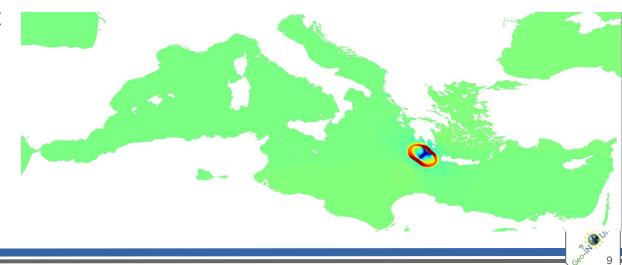
- -Web based ssh service provided by Google Cloud (no graphical interface)
 - Gcloud tool with graphical connection.


Example:

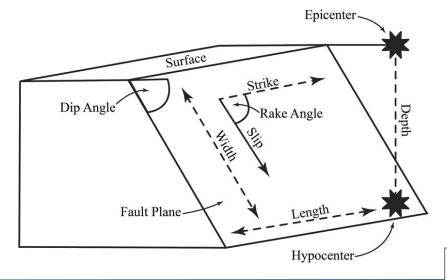
```
./gcloud compute ssh --ssh-flag="-X" --zone "us-central1-a" "tsunami-hysea" --project "civic-abode-420411"
```


Tsunami-HySEA: open source version

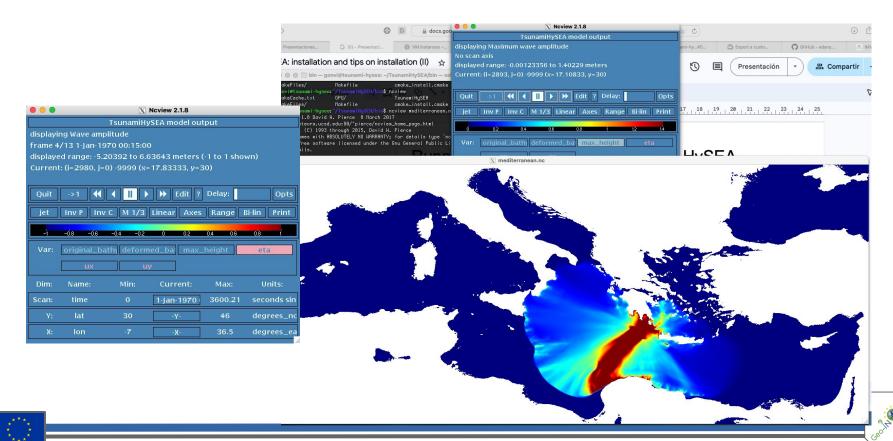
Tsunami-HySEA: open source version


ersion/	Subversion	Subsubversion	Release date	Main features
1	1	0	abr-23	Added the possibility to initialize the tsunami source with standard Okada
				Added time series
				Added reading of meshes in grd format
1	1	1	jun-23	Corrected initialization of numPuntosSave in Problema.cxx so that it is always initialized
				Corrected the precedence bug with the & operator in getKernelBlockSize
				Fixed "length" in the help text when running the program without arguments
				Added "Time series: yes/no" when displaying problem information
				Added "return 1" if there is not enough GPU memory when reserving d_positionsVolumesSaved
				Added initialize etaMinSavedPoints (and etaMax) in the else of the if after initTimeSeries
				Moved start of timer to before getDeltaTlInitialLevel0
				Changed the value of "comments" and "references" from "" to " " in the output NetCDF files
				Print Okada values in the output NetCDF files with 4 decimal places

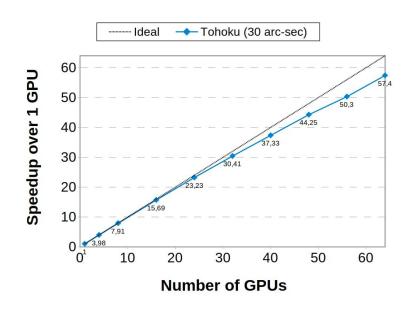
Current version of Tsunami-HySEA v4.3.1


Example included in this version of HySEA:

- Mediterranean.grd
- mediterranean.txt

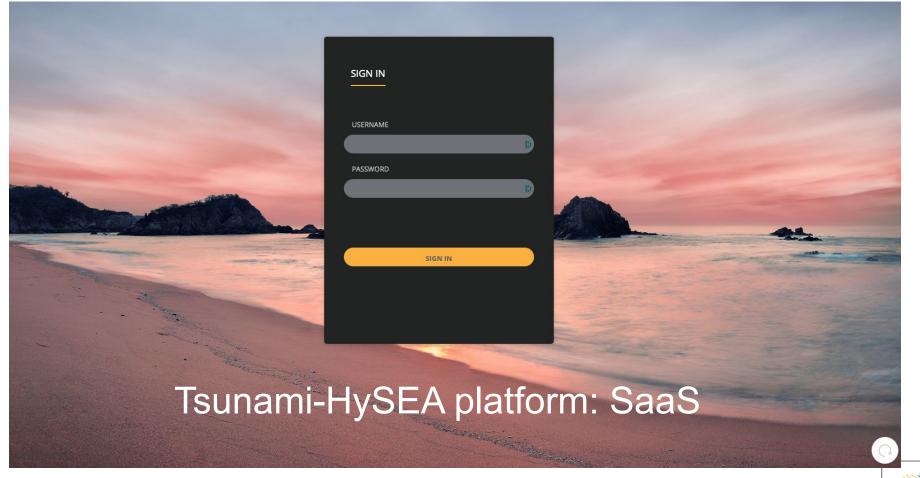

Example included in this version of HySEA:

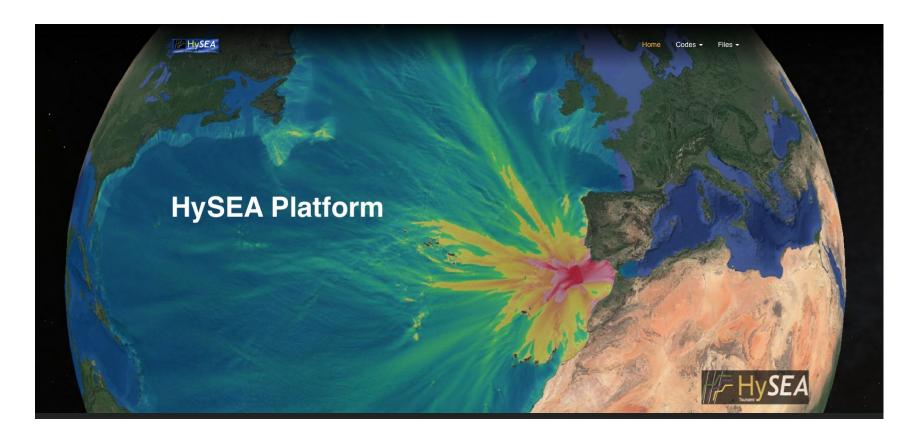
- Mediterranean.grd
- mediterranean.txt




```
bin - gonvi@tsunami-hysea: ~/TsunamiHySEA/Mediterranean - ssh < gcloud.py compute ssh --ssh-flag=-X...
         mediterranean.txt (Modified)
                                                                                            Row 1
                                                                                                     Col 36
Mediterranean
                      # Experiment name
Mediterranean.grd
                      # Bathymetry file name
                      # Initialization type (0: From file, 1: Standard Okada)Setting Started Data Typ
22.30 35.70 16.33 100.0 50.0 313.0 35.0 90.0 8.40 # Lon-epicenter Lat-epicenter Depth-hypocenter Fault-length
                      # NetCDF file prefix for level 0
mediterranean
                      # Number of levels
                      # Upper border condition (1: open, -1: wall)
                      # Lower border condition
                      # Left border condition
                      # Right border condition DAVSICAL Data
14401.0
                      # Simulation time (sec)
                      # Saving time of NetCDF files (sec) (-1: do not save) grids that can be imported int
3600
                      # Read points from file (0: no, 1: yes). Used for time series
0.5
                      # CFL
5e-3
                      # Epsilon h (m)
                      # Threshold for the 2s+WAF scheme (m)
20
0.2
                      # Stability coefficients for each level, starting from level 0
0.03
                      # Water-bottom friction (Manning coefficient)
100
                      # Maximum allowed velocity of water
100000
                      # L (typical length)
                      # H (typical height)) Grids
1000
```


Other Tsunami-HySEA features


- MultiGPU (load balancing)
- Multi-Okada
- Nested Grids
- MonteCarlo version
- Async-writing, Variable friction, Gaussians, Triangular faults, Kajiura filter, etc...


Example in the whole Pacific with a 336,8M cells grid

Thank you for your attention!

Geo-INQUIRE is a joint effort of 51 institutions

